
Reinforcing IoT-Enforced Security Policies
Nouha Oualha

CEA, LIST, Communicating Systems Laboratory
91191 Gif-sur-Yvette CEDEX, France

Email: nouha.oualha@cea.fr

Abstract—To provide confidentiality protection and access
control to large amount of data generated by the Internet of
Things (IoT), one promising approach lies on the use of Attribute-
Based Encryption (ABE). However, the ABE-based approach
needs to cope with the resource constraints of IoT devices, by
providing data encryption and access control only under small
access policies. With the goal to mitigate this limitation inherent
to the IoT, this paper introduces a new technique that relies
on semi-trusted intermediate entities to reinforce large access
policies derived from small policies enforced by IoT devices
without revealing the encrypted data.

Index Terms—Internet of Things, Attribute-based Encryption,
access policy, encryption.

I. INTRODUCTION

The number of devices connected to the Internet of Things
(IoT) is predicted to grow rapidly, and accordingly increas-
ingly large amount of data is being generated by these IoT
devices. Related to different application domains e.g., demotic
and home automation, remote monitoring, smart healthcare,
smart cities, and smart grid, most of the generated data are
sensitive information e.g., business, client, patient, or personal
information, that require confidentiality protection and access
control. The provided security solution should be flexible
and fine-grained enough to handle a large number of users
performing different tasks on data. One promising approach
that allows to provide both data confidentiality and access
control at once, is Attribute-based Encryption (ABE). ABE
is a public key encryption cryptosystem that guarantees also
fine-grained access control to the data. Only authorized data
users holding the right set of attributes that satisfy the access
policy associated with the data can decrypt the ciphertext.

In cloud computing and large-scale based applications,
ABE has gained a lot of attention, but little consideration
has been paid for IoT applications, despite the promising
advantages of ABE. The proposed ABE schemes fall short
in terms of performance. As demonstrated in [6], [7], and
[8], it is possible, already today, to deploy ABE schemes on
resource-constrained IoT devices like sensors, but for only
smaller policies. The main limitation experienced with such
devices, shown in [8], is their RAM size. This paper introduces
operations on access structures that are used to build large
access policies from small ones. More specifically, with the
help of a semi-trusted entity (e.g., resource-rich IoT gateway,
cloud service, etc.), a new ABE ciphertext is built under a
new more restrictive access policy which is larger in terms of
its number of attributes. The new ciphertext is derived from
an ABE ciphertext, but without decrypting the ciphertext. As

an illustrative example, we consider a ciphertext of data being
ABE encrypted under an access policy:

Γ0= (organization1 or organization2)

i.e., the ciphertext can be decrypted by users from either
organization1 or organization2. Using our solution, a semi-
trusted entity reinforce the ciphertext by inserting the policy
Γ1 that organization1 would like to enforce. Thus, the new
generated ciphertext will be encrypted under the policy:

Γ
′

0= ((organization1 and Γ1) or organization2))

i.e., the ciphertext can be decrypted by users from either
organization2 or organization1 only if these latter satisfy
the policy Γ1. By repeating the insertion operation (e.g.,
new access policy for organization2), the proposed solution
allows to build a ciphertext under a much more larger access
policy.

Paper outline: The paper is organized as follows: section
II surveys existing works on ABE and lightweight solutions,
section III provides a background overview of access policies
computed using Monotone Span Programs (MSPs) and ABE
schemes, section IV describes the operations performed on
MSPs, section V presents the system design, threat model,
and the proposed solution for policy reinforcement, section
VI evaluates the security and the performance of the proposed
solution, and finally section VII concludes the paper.

II. REALTED WORK

Research efforts on ABE have focused on devising new
ABE cryptographic constructions for new ABE schemes (e.g.,
[1], [2], and [3]) or new features, e.g., multi-authority (e.g.,
[5]), key revocation, rather than on performance efficiency
of ABE (e.g., [4]). Some efforts have been made to design
lightweight ABE-based solutions adapted to the resource con-
straints of some IoT devices. For instance, authors in [4]
propose to tradeoff the CPU usage with the memory space
by applying pre-computing techniques to ABE such that the
device uses the pre-computed values instead of computing
expensive scalar multiplications.

Due to the increasing use of IoT devices, some implemen-
tations of ABE schemes have been proposed on smartphone
devices. In [6], the authors have implemented a C library
of some main ABE schemes for Android operating system.
Similarly, the authors in [7] have implemented these ABE
schemes in Java on an Atom-based Android phone, and
evaluated the performance of the implemented schemes. With

an acceptable amount of resources in terms of CPU and
energy, both implementations have demonstrated the feasibility
of effectively using ABE on smartphone devices. From their
performance measurement results, the encryption algorithm
is the less expensive algorithm in the implemented ABE
schemes, even though the required resources increase with the
number of attributes in the access policy. The authors in [8]
considered a more resource constrained type of IoT devices:
sensor devices. They demonstrated the feasibility of running
ABE on resource-constrained sensors, and more importantly,
their findings revealed that the major limiting factor of using
ABE on these devices is their RAM size that limits the size of
the access policy. In this paper, we propose a new technique
to build ABE ciphertexts under large access policy from
ABE ciphertexts with smaller access policies. The proposed
technique is designed to lighten computations on resource-
constrained devices like sensors and actuators, by considering
small access policies for ABE encryption. To the best of our
knowledge, this paper is the first to undergo such operations
on access structures for access policies associated with ABE
schemes.

III. PRELIMINARIES

In the following, we provide a brief background on some
math operations, an MSP-based representation of access poli-
cies, and a description of the Waters ABE scheme.

A. Kronecker product

The Kronecker product, denoted by ⊗, is an operation on
two matrices of arbitrary size resulting in a block matrix. Let
A be a m1×d1 matrix, B be a m2×d2 matrix, and C and D
be two matrices. A⊗B is defined as an m1m2×d1d2 matrix:

A⊗B =

 m11B . . . m1d1B
...

. . .
mm11B . . . mm1d1B


The Kronecker product is the generalization of the outer
product from vectors to matrices. It should not be confused
with the Euclidian inner product of two vectors u, v, being
〈u, v〉 = uT v.

B. Monotone Span Programs

Access policies used in practice are represented using
Boolean formulae (e.g., ((Patient or Relative) and Doctor)).
Apart from Bethencourt et al.s ABE scheme [1] and few
original proposals (e.g., [4]) that used tree structures, the
majority of ABE schemes (e.g., [2], [3], [5]) have expressed
access policies using a more general representation, called
Monotone Span Programs (MSPs). The efficiency of these
schemes did not decline by using the more general MSP-based
representation.

The access policy is expressed using an MSP matrix M over
the attributes in the policy. The authors in [5] (appendix G)
showed a simple method to convert a Boolean formula with
AND and OR gates into an MSP matrix with 0,±1 values.
Using the Benaloh- Leichter secret-sharing scheme, the ABE

scheme proposed in [18] can realize ABE MSPs with also
0,±1 values.
Definition 1 (Monotone Span Program) [9] A Monotone
Span Program (MSP) is a quadruple (F,M, t, ρ), where F is
a finite field, M is a matrix (with m rows and d ≤ m columns)
over F , ρ : {1, ...,m} → {1, ..., n} is a surjective function and
t = (1, 0, ..., 0)T ∈ F d is called target vector. The size of M
is the number m of rows and is denoted as size(M).

For reasons of simplicity and brevity, the MSP quadruple
(F,M, t, ρ) is shortened to (M,ρ) and sometimes to the matrix
M . In the following, rows of a matrix M owned by an attribute
or a set of attributes S are denoted as (M)S , and columns
indexed from i to j are denoted as [M]i,...,j . A m × n zero
matrix is represented by 0m,n.

C. Background on ABE

In the literature, ABE comes in two flavors: Key-Policy
Attribute-Based Encryption (KP-ABE) and Ciphertext-Policy
Attribute-Based Encryption (CP-ABE). The first type of ABE
schemes associates data with the attributes and the access
policy with the users, whereas, the second type inverses these
associations. This makes the second type of schemes more
flexible, since it allows the data owner (encryptor) to update
the access policy associated with the data without updating
the decryption keys associated with the users. Moreover, the
second type of ABE schemes allows to better enforce attribute-
based access control. In this paper, we focus on the second
type of ABE schemes, CP-ABE.

To demonstrate the practicability of our solution, one pop-
ular CP-ABE scheme, the Waters scheme [2], is extended
with our new algorithm based on the proposed reinforcement
technique. The technique, of course, can be applied to other
CP-ABE schemes (e.g., [1], [3], [5]) in the same fashion. The
Waters scheme is briefly presented in the following using the
MSP-based description provided in [3] (Appendix E with a
scheme built using asymmetric bilinear maps):
• Setup(1λ) → (pk,msk): The algorithm sets three

groups G1, G2, and GT of prime order p = Θ(λ)
supporting a non-degenerate efficiently computable bi-
linear map e : G1 × G2 → GT , in addition to two
generators P and Q for respectively G1 and G2. It
chooses two random exponents α, a ∈ Zp and a set of
random elements H1, . . . ,HU ∈ G1 that are associated
with the U attributes in the system. Then, it computes
pk = (P,Q, a.P, e(P,Q)α, H1, . . . ,HU), and msk =
(α.P). The algorithm outputs (pk,msk).

• KeyGen(msk, S) → (sk): The algorithm picks a ran-
dom number t ∈ Zp. Then, it computes K = α.P +
t.(aP), L = t.Q, and ∀y ∈ S ⊆ U : Ky = t.Hy as the
key sk. The algorithm outputs sk.

• Encrypt(pk, (M,ρ),msg) → (ct): For an MSP matrix
of m rows and d columns, the algorithm chooses random
numbers s, y2, . . . , yd, r1, . . . , rm ∈ Zp. Let the vector
v = (s, y2, . . . , yd), ∀1 ≤ i ≤ m : µi = 〈(M)i, v〉,
where (M)i is the ith row of M . Then, it computes C =
e(P,Q)αs.msg, C ′ = s.Q, and ∀1 ≤ i ≤ m : Ci =

µi.(a.P) + (−ri).Hρ(i), Di = ri.Q as the ciphertext ct.
The algorithm outputs ct = ((M,ρ), C, C ′,∀1 ≤ i ≤ m :
Ci, Di).

• Decrypt(pk, ct, sk) → (msg′,⊥): If the set of
attributes S in sk does not satisfy the MSP
(M,ρ) in ct, then the algorithms outputs ⊥.
Otherwise, it exists a set of constants {νi}i∈I ,
such that

∑
i∈I νi(M)i = (1, 0, . . . , 0), where I

is the set of indexes of the rows of M mapped
to attributes in S. Then, it computes msg′ =
C.e(

∏
i∈I C

νi
i , L).

∏
i∈I e(Kρ(i), D

νi
i)/e(K,C ′) and

outputs msg′.

IV. COMPOSITION OF MSPS

In this section, we investigate useful operations on MSPs
proposed in [9] and [10]. Such operations allow to begin with
small access policies with a few attributes and build them up
to large access policies with higher number of attributes.

A. Restrictions

Let Γ be a monotone access structure expressed with the
MSP matrix M , and defined on the set of attributes U , and let
Q ⊆ U . The restriction of Γ at Q, Γ|Q, is a monotone access
structure defined on U \ Q such that for each S ⊆ U \ Q,
S ∈ Γ|Q means S ∈ Γ. The authors in [9] showed that the
MSP matrix M|Q of Γ|Q is formed by removing the rows in
M , which correspond to the members of Q. For a CP-ABE
ciphertext built under an access structure Γ, the sets that can
be removed are defined as Q ∈ S such that there exists a
set S ∈ U \ Q and S ∈ Γ, because, otherwise the ciphertext
cannot be decrypted.

B. Insertions

We consider two monotone access structures Γ1 and Γ2

defined on the attribute sets U1 and U2 respectively. Γ1 and
Γ2 are expressed with MSPs M1 and M2 of size m1 and m2

respectively. We consider also a function ρ1 which gives for
every row i in M1 the associated attribute ai ∈ U1 (denoted by
ρ(i)). For an attribute ax ∈ U1, the insertion operation of Γ2 at
ax in Γ1, denoted Γ1(ax → Γ2), is defined to be the monotone
access structure on the set (U1 \ {ax})∪U2 such that for any
S ⊆ (U1 \{ax})∪U2 : S ∈ Γ1(ax → Γ2) ⇐⇒ S∩U1 ∈ Γ1,
or ((S ∩ U1) ∪ {ax} ∈ Γ1 and S ∩ U2 ∈ Γ2). In other words,
Γ1(ax → Γ2) is the monotone access structure Γ1 with the
attribute ax ”replaced” by the sets of Γ2. As demonstrated in
[9], there exists an MSP M computing the access structure
Γ1(ax → Γ2) of size equal to m1 + (m2 − 1)|ρ−1(ax)|. The
matrix can be computed as:

M =

[
(M1)ax ⊗ u M̃2

(M1)U1\ax 0

]
(1)

Where, (M1)ax is the set of rows owned by the attribute ax,
(M1)U1\{ax} is the remainder of rows of M1, u is the first
column of M2 (i.e., M2 = [u(M2)U2\{u}]), and M̃2 is the

remainder (M2)U2\{u} repeated diagonally with the number
of rows mapped to ax (i.e., ρ1(ax)):

M̃2 =

(M2)U2\{u} 0 . . .
0 (M2)U2\{u} . . .
...

...
. . .

 (2)

It is worth noting that the computed MSP matrix M according
to equations (1) and (2) still includes the MSP matrix M1 of
Γ1 without the rows owned by ax. As per the CP-ABE scheme
built with an MSP-based approach, a ciphertext includes group
elements that hide the used random vector v = (s, y2, . . . , yd1)
applied to the MSP matrix. Hence, one way to operate an
insertion of a new access policy Γ2 over a ciphertext com-
puted under the access policy Γ1 without decrypting it, is to
choose an access policy Γ2 such that the elements from the
original ciphertext are kept and used either without change or
mapped with some affine transformation that preserves linear
combinations between the group elements e.g., a translation
transformation.

A non-trivial example of such insertion operation is the one
given by Γ1(ax → (ax and Γ2)). The matrix M of the access
policy Γ1(ax → (ax and Γ2)) can be computed as:

M =

 (M1)ax
0

M̃2

(M1)U1\{ax} 0


The rows of the matrix M can be reorganized to give the
matrix M defined below by the formula (3) that will be used
in the remainder of this paper in order to compose a new
policy Γ1(ax → (axandΓ2)) from the policy Γ1.

M =

M1
0

(M̃2)ax
0 (M̃2)U2\{ax}

 (3)

C. Products
There are several special cases of the use of the insertion

operation. We will consider one of them, which is the product
of two access policies. If Γ1 and Γ2 are defined on U1 and U2

respectively. The product Γ1 ×Γ2 is defined as the monotone
access structure on U1 ∪ U2 such that for A ⊆ U1 ∪ U2, A ∈
Γ1 × Γ2 means (A ∩ U1 ∈ Γ1 and A ∩ U2 ∈ Γ2). Let Γ1

and Γ2 be monotone access structures with MSPs M1 of size
m1 and M2 of size m2 respectively. The authors in [9] have
demonstrated that there exists an MSP M of size m1 + m2

computing the product Γ1 × Γ2. The MSP matrix M can be
computed by applying two times the insertion operation to the
following matrix representing the access structure (a1 and a2):[

1 −1
0 1

]
The matrix M is derived as:

M =

[
u −u (M1)U1\{u} 0
0 v 0 (M2)U2\{v}

]
(4)

Where u is the first column of M1 (i.e., M1 =
[u (M1)U1\{u}]), and v is the first column of M2 (i.e.,
M2 = [v (M2)U2\{v}]).

From an already generated CP-ABE ciphertext under policy
Γ1, it is obvious to see that CP-ABE ciphertext under the
policy product Γ1 × Γ2 can be produced from the ciphertext
under policy Γ1, without having to decrypt the ciphertext.
Indeed, new random values (yd1+1, . . . , yd1+d2) can be used
to mask the rest of the produced matrix M . The columns of
the matrix M computed in formula (4) can be reorganized to
have the matrix hereafter that will be used throughout the rest
of the report to build a new policy Γ1×Γ2 from an initial one
Γ1:

M =

[
M1 −u 0
0 v (M2)U2\{v}

]
(5)

V. PROPOSED REINFORCEMENT TECHNIQUE

This section describes the technique of reinforcement of
the access policy that allows reducing the size of the access
policy used for data encryption at end devices, such as IoT
devices. The proposed technique relies on intermediate entities
to reinforce the access policy, particularly with new attributes.
To this end, we will first present a scenario of reference to
introduce, for instance, new actors (i.e., intermediate entities)
and their associated threat model, and then describe the new
technique.

A. Scenario model

Our base scenario (using the AAA framework terminology
[12]) includes: a cryptographically policy enforcement point
(PEP) that encrypts data (e.g., an IoT device), a policy
reinforcement point (PRP) that reinforces the ciphertext policy
(e.g., IoT gateway, Cloud service), a policy administration
point (PAP) that manages and delivers policies (e.g., IoT
administration server) to both PEP and PRP, and finally a
data user that decrypts data (if it has sufficient attributes).
The proposed scenario model is illustrated in Figure 1. While
the PAP is not required to be online, the PRP is required to
reinforce policies between the PEP and the data user. The PAP
and the PRP could be co-localized.

We assume that all communications between any two actors
are at least integrity protected, i.e., all messages are authen-
ticated and protected against replay attacks. Moreover, since
the access policy used by the PEP to encrypt the data is less
restrictive than the final ciphertext returned by the PRP, the
PEP should use a supplementary encryption layer to protect
the ciphertext, by means of common security measures (e.g.,
symmetric encryption) using keys pre-established between the
PEP and the PRP. The PAP should ensure that the policy
enforced by the PEP, Γ0, is not satisfied by the attributes
associated with the PRP if this latter is not authorized to access
the encrypted message i.e., its attributes do not satisfy Γ′.

B. Threat model

This subsection describes the considered threat model in our
proposal. Compared to a typical CP-ABE scheme model, our
scenario model adds a new actor, the PRP. The considered
adversary model associated to this actor is provided with
definition 2. The definition is an informal description of the

Fig. 1. Scenario model

adversary model. A more formal definition of such model can
be found in [12].
Definition 2 (Honest-but-curious adversaries) [11] The
honest-but-curious (HBC) adversaries follow correctly the
protocol specification. However, the adversary keeps a record
of all intermediate computations in order to learn information
that is supposed to remain private.

C. Policy reinforcement algorithm

We propose to extend ABE schemes with a new algorithm,
the policy reinforcement algorithm. This algorithm is executed
by the PRP, with the aim to reinforce the ciphertext with a new
policy issued by the PAP.

Let PolicyReinforceGen be a policy generator that on
input the policy Γ0, returns a new policy Γ′. The algorithm
whereby a set of policies of this form (ai×Γi) are inserted to
replace a number of attributes {ai} in Γ0, and also a number
of policies Γ′0 are multiplied to the result, is executed by the
PAP. Restriction operations can be also applied to the result.
The new policy (M ′, ρ′) is computed as described in section
IV, and transmitted to the PRP.
• PolicyReinforce(pk, ct, (M ′, ρ′)) → ct∗: The algo-

rithm takes the input comprising the public key pk,
the ciphertext ct that encloses an access policy (M,ρ),
and a new access policy (M ′, ρ′), and produces a new
ciphertext ct∗ under the new access policy (M ′, ρ′) as
the output.

Let the MSP matrix M ′ produced by the
PolicyReinforceGen generator be a m′ × d′ matrix
and the original MSP matrix M be a m × d matrix. Based
on the equations (3) and (5), the rows and columns of
M ′ are organized such that: ([M ′]1,...,d)1,...,m = M and
([M ′]1,...,d)m+1,...,m′ = 0m′−m,d. The ciphertext ct∗ is
derived from ct without decrypting it. The vector v′ that is
applied to MSP matrix M ′ to produce exponents to be used
in ct∗, is defined as the vector v0 used in ct appended with
(d′ − d) new random numbers, expressed as a vector v of
size (d′ − d) (i.e., v′ = [v0 v]). This leads to:

〈(M ′)1,...,m, v′〉 = 〈M, v0〉+ 〈([M ′]d+1,...,d′)1,...,m, v〉
〈(M ′)m+1,...,m′ , v′〉 = 0 + 〈([M ′]d+1,...,d′)m+1,...,m′ , v〉

In the above sums, the left part is already computed in ct
or null, and the right part that does not require any knowledge
of v0 is computed by the PRP during policy reinforcement.
The new algorithm extended to Waters’ scheme is described
as follows:
• PolicyReinforce(pk, ct, (M ′, ρ′))→ ct∗: Let the MSP

matrix M ′ be of m′ rows and d′ columns, the ciphertext

ct = ((M,ρ), C, C ′,∀1 ≤ i ≤ m : Ci, Di), and the
original MSP matrix (M,ρ) in ct be of m rows and d
columns. The algorithm chooses the following random
numbers (rd+1, . . . , rd′ , yd+1, . . . , yd′) ∈ Zp. Let v =
(yd+1, . . . , yd′). Then, the algorithm computes ∀1 ≤ i ≤
m′ : µi = 〈([M ′]d+1,...,d′)i, v〉, where ([M ′]d+1,...,d′)i
is the ith row of [M ′]d+1,...,d′ . Then, the algorithm com-
putes ∀(m+1) ≤ i ≤ m′ : Ci = (−ri).Hρ(i), Di = ri.Q,
and then, ∀1 ≤ i ≤ m′ : C∗i = µi.(a.P) + Ci. It outputs
ct∗ = ((M ′, ρ′), C, C ′,∀1 ≤ i ≤ m′ : C∗i , Di).

VI. EVALUATION AND DISCUSSION

This section provides an informal analysis of the security of
the proposed solution. We argue that the proposed technique
does not weaken the CP-ABE scheme and does not reveal
information about the encrypted message, while achieving en-
ergy savings. Additionally, this section provides a performance
analysis of the technique implemented on a real-world sensor
platform.

A. Security considerations

For the analysis of the security of the proposed solutions,
we distinguish between two types of attackers: an outsider
attacker (i.e., not part of the scenario model) and an insider
attacker (i.e., one of the actors in the scenario model).

In the considered scenario model, an outsider attacker has
only access to the ciphertext ct(Γ′) assuming that the commu-
nications between the PEP and PRP are both confidentiality
and integrity protected. Thanks to the security of the used CP-
ABE scheme, the attacker cannot disclose the plaintext. Only
authorized users with attributes satisfying the access policy are
able to decrypt the ciphertext.

The scenario model adds a new actor, the PRP, that rein-
forces the ciphertext with a new policy. The PRP is assumed
to be an honest-but-curious party. If this new actor is an
insider attacker, it may attempt to guess the plaintext from
received ciphertexts produced by PEPs, while performing tasks
according to the desired scenario model and returning correct
results from the PolicyReinforce algorithm. If the PRP is not
authorized to access the ciphertext, its attributes should not
satisfy the access policy enforced by the PEP, Γ0, as ensured
by the PAP, so that the PRP cannot decrypt the ciphertext
thanks to the security of the employed CP-ABE scheme. Due
to the definition of honest-but-curious model that we consider
in this paper, collusion between the PRP and users that may
verify the unreinforced policy Γ0, are out of the scope of the
paper.

B. Performance analysis

In this subsection, we describe our software implementation
of the Waters scheme on real-world sensor platform. This
performance analysis demonstrates the significant challenge
posed by the access policy size i.e., the number of attributes.

1) Experimentation tools and platforms:: In our implemen-
tation, for the sensor network part, we used the Zolertia RE-
Mote Revision B platform [13] that features an ARM Cortex
M3 microcontroller that runs up to 32 MHz and includes
32 Kbytes of RAM and 512 Kbytes of Flash. We opted
for the Contiki OS [14] as the operating system, which is
an open source operating system for the IoT. The PC is a
Dell Latitude-E6420 featuring Core i5 2,5GHz processor, with
Ubuntu 14.04 LTS installed. All messages exchanged between
the sensors and the PC are transmitted using the Constrained
Application Protocol (CoAP) which is an Internet application
protocol for constrained devices specified in RFC 7252 [20].
The sensor runs a CoAP server, and the user runs a CoAP
client implemented on Python using the CoAPthon library
[21]. Our system setting consists of five entities:

• Key distribution center (KDC): The KDC is not only
responsible for the scheme setup and key distribution to
data users, but also policy administration, i.e., the PAP
role, and secure distribution of access policies to the PEP
and the PRP. In our implementation, the KDC is emulated
as a Linux PC. The Charm framework [15] is used to
implement the setup and key generation algorithm.

• Gateway: The sensor part of the gateway is based on
the Contiki OS on an OpenMote sensor platform [19]
connected to the PC by USB. The gateway connects the
sensor device to the PC.

• Sensor: The sensor, as the PEP, is also based on the
Contiki OS on a Zolertia RE-Mote Revision B platform.
The device communicates with the gateway using the
IEEE 802.15.4 protocol. The encryption algorithm is
implemented at the device using the cryptographic library
Relic-toolkit [16].

• Proxy: The proxy, as the PRP, is connected to the IoT
network through the PC part of the gateway, and its role
is to re-encrypt the ciphertext transmitted by the sensor
using an additional policy handed out by the KDC. Re-
encryption implemented using the Charm framework.

• User: the data user is emulated as a Linux PC. The
decryption algorithm is implemented based on the Charm
framework.

2) Performance measurements and discussion:: This sec-
tion is dedicated to analyzing the performance of the encryp-
tion algorithm on the sensor device. Energy consumption is of
a primary importance for battery-powered devices. In order to
estimate the energy consumption, we used tools provided by
the contiki OS [17], and using the formula described in [22]
(subsection VI-B). Even though, aside from a CoAP server,
no other application is running on the sensor device that may
use the 32 Kbytes of RAM memory, the maximum number of
attributes in the ciphertext cannot reach more than 9 attributes.
A maximum number of 12 attributes is obtained in [8] running
a Content-Centric Networking stack directly over 802.15.4
radio without any underlying UDP or IP layers. This makes
the communication stack lightweight leaving more RAM and
processor for ABE encryptions. The authors demonstrated that

Fig. 2. Energy consumption of the Waters encryption algorithm.

Fig. 3. Time consumption of the Waters encryption algorithm.

Fig. 4. Time consumption of proxy re-encryptions (Waters scheme).

this number falls to a maximum of 6 attributes for multi-
authority ABE encryption operations.

Figure 2 shows the total energy consumption of the Waters
scheme [2] encryption algorithm, varying the number of
attributes in the access policy. The figure demonstrates that
the energy consumption increases, approximately linearly, with
the number of attributes. From 2 to 9 attributes, the consumed
energy rises from around 9mJ to around 25mJ.

Figure 3 consolidates the result of the linear increase of
the used resources with the number of attributes in the policy.
For instance, the execution time increases from around 5s to
around 14s by increasing the number of attributes from 2 to
9. For 9 attributes in the access policy, the execution time
of the encryption algorithm at the sensor device reaches 13s.
Whereas, as shown in Figure 4 adding 100 attributes to the
access policy through proxy re-encryption, requires just around
2.4s. At the proxy, the execution time of the re-encryption
operation increases almost linearly with the number of added
attributes, but the slope of the line is smaller by a factor of
75, than for a resource-constrained device.

VII. CONCLUSION

The more devices are connected to the IoT, the more data
are generated. The security solutions provided to such data, in
several application domains, should be carefully designed, in

particular to manage the different types of IoT devices, data
users, and uses. In this context, CP-ABE offers an elegant
approach to provide both data confidentiality protection and
fine-grained access control. In this paper, we described a tech-
nique that allows to continue to benefit from the high degree
of granularity of access policies while enforcing these policies
on resource-constrained IoT devices. The proposed technique
allows to build from ciphertexts under small access policies
enforced, for instance, by IoT devices, ciphertexts under more
complex and large access policies. This is achieved without
ciphertext decryption, but by means of policy reinforcement
at semi-trusted intermediate entities, such as IoT gateways or
Cloud services hosting the IoT data. As future work, we plan to
demonstrate the performance gains of the proposed technique
with a more elaborated sensor network setting composed of
multiple sensors and data users to measure the performance
of ABE on such setting. We plan also to consider other ABE
schemes and extensions proposed in the literature.

REFERENCES

[1] J. Bethencourt, A. Sahai, and B. Waters, Ciphertext-Policy Attribute-
Based Encryption, In IEEE SP 07, 2007.

[2] B. Waters, Ciphertext-policy attribute-based encryption: an expressive,
efficient, and provably secure realization, In 14th PKC, 2011.

[3] S. Agrawal and M. Chase, FAME: Fast Attribute-based Message Encryp-
tion, In ACM CCS, 2017.

[4] N. Oualha and K. T. Nguyen, Lightweight Attribute-based Encryption for
the Internet of Things, In 25th ICCCN 2016, 2016.

[5] A. Lewko and B. Waters, Decentralizing attribute-based encryption, In
30th EUROCRYPT, 2011.

[6] M. Ambrosin, M. Conti, and T. Dargahi, On the Feasibility of Attribute-
Based Encryption on Smartphone Devices, In Workshop IoT-Sys, 2015.

[7] X. Wang, J. Zhang, E. M. Schooler, and M. Ion, Performance evaluation
of attribute-based encryption: Toward data privacy in the IoT, In ICC’14,
2014.

[8] J. Borgh, E. Ngai, B. Ohlman, and A. M. Malik, Employing Attribute-
Based Encryption in Systems with Resource Constrained Devices in an
Information-Centric Networking Context, In GIoTS, 2017.

[9] V. Nikov, S. Nikova, New monotone span Program from Old, Cryrtology
ePrint Archive:Report, 2004/282.

[10] J. Xu and X. Zha, Secret Sharing Schemes with General Access
Structure Based on MSPs, Journal of Communications, Volume 2, No. 1,
2007.

[11] Oded Goldreich, Foundations of cryptography: volume 2, basic applica-
tions, Cambridge university press, 2009.

[12] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross, B. de
Bruijn, C. de Laat, M. Holdrege, and D. Spence, AAA Authorization
Framework, IETF RFC 2904, August 2000.

[13] Zolertia: https://github.com/Zolertia/Resources/wiki/RE-Mote
[14] A. Dunkels, B. Gronvall, and T. Voigt, Contiki-A Lightweight and

Flexible Operating System for Tiny Networked Sensors, In LCN, 2004.
[15] J. A. Akinyele, Charm: A framework for rapidly prototyping cryptosys-

tems, J. Cryptograph. Eng., vol. 3, no. 2, pp. 111-128, 2013.
[16] Relic-toolkit, an efficient library for cryptography,

https://code.google.com/p/relic-toolkit/.
[17] A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He, Software-based on-line

energy estimation for sensor nodes, In workshop EmNets’07, 2007.
[18] J. Crampton and A. Pinto, Attribute-Based Encryption for Access

Control Using Elementary Operations, In IEEE CSF ’14, 2014.
[19] OpenMote platform: http://openmote.com/
[20] Z. Shelby, K. Hartke, and C. Bormann, The Constrained Application

Protocol (CoAP), IETF RFC 7252, June 2014.
[21] G. Tanganelli, C. Vallati, and E. Mingozzi, CoAPthon: Easy develop-

ment of CoAP-based IoT applications with Python, In WF-IoT15, 2015.
[22] K. T. Nguyen, N. Oualha and M. Laurent, Lightweight Certificateless

and Provably-Secure Signcryptosystem for the Internet of Things, In IEEE
Trustcom/BigDataSE/ISPA, 2015.

